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Abstract: Recently, there has been a significant amount of research related to heavy trucks operating as connected and autonomous vehicles
(CAVs). As argued in this paper, to understand the potential impact on the freeway system of CAV technologies, analyses should be con-
ducted using the standard US methodological framework. Consequently, this paper uses the exact Highway Capacity Manual, Sixth Edition
(HCM-6) equal capacity passenger car equivalent (EC-PCE) methodology to estimate capacity and EC-PCEs for CAV truck platoons on
freeway segments. It was found that EC-PCE values for CAV trucks are, on average, 34.3% lower compared to the values for non-CAV trucks,
indicating that CAV platoons can have a positive effect on highway capacity. The amount of decrease is a function of a number of CAV
operational assumptions, and these are studied through a sensitivity analysis. This paper demonstrates that the effect of CAV truck platoons
can be modeled using the standard HCM-6 approach, and the methodology allows meaningful comparisons so that traffic agencies can better
prepare for the adoption of CAV technologies. DOI: 10.1061/JTEPBS.0000492. This work is made available under the terms of the Creative
Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Truck platooning; Connected and autonomous vehicle (CAV); Capacity adjustment factor (CAF); Passenger car
equivalent (PCE); Highway capacity manual (HCM); Freeway; Capacity; Microsimulation; VISSIM.

Introduction

In the sixth and current version of the Highway Capacity Manual
(HCM-6) passenger car equivalents (PCEs) are used to account
for the effect of different vehicle types on capacity and quality of
service of a mixed traffic stream. These vehicle types include heavy
vehicles, motorcycles, and recreational vehicles, and the PCE ac-
counts for differences in size and operational characteristics as com-
pared to passenger cars. In effect, the PCE represents the number of
passenger cars that would produce the same effect on the traffic flow
as a given vehicle type. Transportation engineers use PCEs to convert
traffic streams, measured in vehicles per hour (veh=h), to an equiv-
alent stream that is measured in passenger car units per hour (pcu=h).
This allows various roadways, which have different proportions of
vehicle types, to be analyzed or designed based on a single metric.

The PCE concept has been used for over 55 years in the Highway
Capacity Manual (HCM) and other design guides (HCM 1965,
2016; AASHTO 2011; Urbanik et al. 2015). In the current version,
HCM-6, PCEs for freeway and multilane highway segments are es-
timated using the equal-capacity method. The PCEs, referred to
in this paper as equal capacity PCEs (EC-PCEs), are calculated using
the estimated capacities of both mixed-flow and passenger car–only
flow (HCM 2016; Dowling et al. 2014a; Yang 2013; Zhou 2018).

It is important to note that the HCM-6 equal capacity method-
ology for freeway segments is based completely on VISSIM micro-
simulation model results that were aggregated over 1-min intervals.
The HCM-6 includes EC-PCE values for 14 levels of truck percent-
age, 13 levels of grade, 7 levels of grade distance, and 3 levels of
truck composition type. The advantage to using a simulation model
is obvious—it greatly reduces the amount of empirical data that
need to be collected and allows for relatively quick analysis of
many different situations. For example, on the surface it would
be relatively easy to simulate connected and automated vehicles
(CAVs) and use the resulting output to estimate capacity and PCE
values. The disadvantages are also obvious (Hendrickson and Rilett
2017). In particular, the developers of the VISSIM model periodi-
cally update their model and do not guarantee backward compat-
ibility. Therefore, if users are going to use later versions of VISSIM
to model new situations, such as CAVs, and use the output to es-
timate capacity and PCE values, they must ensure that the results
are compatible with the original VISSIM model used to calculate
the values in the HCM-6.

Recently, there has been a significant amount of research
related to heavy trucks operating as autonomous vehicles (AVs)
as well as CAVs (Bujanovic and Lochrane 2018; Kang et al. 2019;
Mahdavian et al. 2019). CAVs are defined as vehicles that are
capable of both autonomous driving and connectivity with other
entities of the transportation system (e.g., vehicles, road infrastruc-
ture) (Guanetti et al. 2018). These CAVs will form platoons where
the lead vehicle “controls” the behavior of the following vehicles
and the following vehicles are able to maintain time headways
much smaller than that used by non-CAVs. It is hypothesized that
these CAV platoons will, among other benefits, reduce congestion,
increase capacity, reduce pollution, and alleviate the US commer-
cial driver shortage. It is has been argued that heavy trucks will be
the first CAVs on the national trunk highway system because the
driving environment is not as complex as urban arterial networks
and because there are significant benefits in terms of increased fuel
efficiency, reduced operating costs, and improved truck safety
(Hallmark et al. 2019; Fitzpatrick et al. 2016; Janssen et al. 2015).
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It is important that the effect of CAVs on the performance of these
systems be determined. While considerable work has been done
on CAV modeling (Sukennik 2018; Kittelson & Associates 2019;
Stanek 2019; Shi and Prevedouros 2016), no models have used
the HCM-6 methodology, which is the national standard for estimat-
ing capacity and quality of service for freeways. Consequently, it is
unclear exactly how the highway capacity metrics, including the
HCM-6 PCE values, will need to change. This paper argues that
in order to understand the potential impact on the freeway system
of CAV technologies, analyses should be conducted using the stan-
dard US methodological framework. This is the motivation of
this paper.

Specifically, this paper uses the exact HCM-6 EC-PCE method-
ology to estimate EC-PCEs for CAV trucks on freeway and multi-
lane highway segments. The main objective is to analyze highway
capacity under the interaction of CAV trucks and conventional
vehicles. In addition, sensitivity analyses are conducted in order
to explore the effect of four factors that are considered critical
in the operation of CAVs: (1) market penetration rate, (2) lane re-
striction, (3) platoon truck type, and (4) platoon size. It should be
noted that it is assumed that only trucks can operate in CAV mode
in this study. Passenger cars will operate as conventional or non-
CAVs. This assumption may be relaxed without changes to the
methodology discussed in this paper. Additionally, it is assumed
that the operational and geometric characteristics of the vehicles
and testbeds used in the CAV analysis (e.g., acceleration/deceler-
ation profiles, speed distributions, weight, and power distributions,
vehicle lengths) are the same as those used in the original HCM-6
methodology.

The remainder of the paper is laid out in four sections. First, the
current HCM-6 EC-PCE values are estimated to ensure that the
current version of VISSIM can be used to replicate the existing
HCM-6 values. Second, the VISSIM microsimulation model is run
with a CAV base case scenario and the output is used to estimate
capacity adjustment factors (CAFs) following the HCM-6 estimation
methodology. Next, the exact HCM-6 EC-PCE methodology is used
to estimate EC-PCEs for CAV trucks interacting with conventional
traffic. Lastly, a sensitivity analysis is performed to measure the ef-
fect of different operational CAV conditions on highway capacity.

Literature Review

This paper uses the European Automobile Manufacturers Associ-
ation (ACEA) truck platooning definition where truck platooning is
defined as the “linking of two or more trucks in convoy, using con-
nectivity technology and automated driving support systems.”
Many researchers believe that truck platooning will be one of
the earliest CAV technologies to be deployed on the national high-
way system because of its lower operational complexity and the
advantages offered to freight carrier companies in terms of fuel sav-
ings, safety benefits, and labor costs, among others (Janssen et al.
2015; ACEA 2017). The Minnesota DOT reported that local trans-
portation agencies should prepare a plan for the gradual integration
of automated technology and truck platooning in the next
5–10 years (Hallmark et al. 2019). The report Challenges to CV
and AV Applications in Truck Freight Operations included an ex-
tensive discussion of the challenges and expected benefits of truck
platooning deployment in the US (Fitzpatrick et al. 2016). This re-
port also listed various research needs including research on the
impact of CAV platooning on transportation capacity.

Over the past few years, a number of studies have analyzed the
effect of CAV technology on highway capacity. Kittelson & Asso-
ciates (2019) derived CAFs as a function of volume and market

penetration rate for CAVs on freeway segments that will be used
in planning studies. This study utilized VISSIM and examined
three different driving behaviors in VISSIM: AV Cautious, AV Nor-
mal, and AV All-knowing. The authors found that CAVs may in-
crease freeway capacities by 30%–40% at 100%market penetration
rates, with the caveat that these results would be a function of cer-
tain factors such as technology, legislation, and public acceptance.

Stanek (2019) proposed an adjustment factor to modify the ad-
justed demand volume [Vp in Eqs. (9)–(12)] of the HCM pro-
cedure. This adjustment factor was based on VISSIM modeling
and used to account for the effect of passenger car AVs on freeway
capacity. The microsimulation model was calibrated so that the
15-min capacity replicated the base capacity included in the
HCM-6, and this calibrated model was used to explore various AV
scenarios. Similar to a previous study, a sensitivity analysis of the
effect of market penetration rates on freeway capacity was con-
ducted. It was found that the AV capacity ranged from 2,350 to
3,200 veh=h= ln. Note that the study did not analyze platoon for-
mation or analyze driver behavior logic.

Shi and Prevedouros (2016) explored the impact of CAVand AV
technologies on freeway segment capacity using a Monte Carlo
simulation to estimate level of services (LOS) assuming AVs and
CAVs headways (1.0 and 0.5 s, respectively) and market penetra-
tion rates (0.1%, 1%, 5%, and 10% to 100% using 10% intervals).
They used the HCM-5 macroscopic equations as a base situation
and found that AVs could improve LOS in high-density conditions.
However, the scope of the study was limited in that the researchers
extrapolated existing HCM-5 equations to explore their AV/CAV
scenarios. In addition, the HCM-5 capacity values were updated in
the HCM-6.

Other studies have also found capacity improvements on free-
ways owing to the deployment of CAV technology (Makridis et al.
2018; Rossen 2018). It should be noted that these studies used ex-
perimental data instead of empirical data and did not include an
analysis of truck platooning. No studies in the literature used the
EC-PCE methodology, which is the standard for capacity analyses
of freeways in the US (Zhou et al. 2018; HCM 2016; Dowling et al.
2014a; Yang 2013), to analyze truck platooning effects.

The Truck Platooning Project in Japan (TTC 2019) assessed the
deployment of CAV truck platooning on a Japanese highway. The
platoons ranged in size from two to four trucks with truck spacing
as small as 10 m and speeds of 70 and 80 km=h. The authors re-
ported successful operation of the platooning systems and identi-
fied issues relative to visibility and merging points. Bevly et al.
(2017) assessed the feasibility of implementing driver-assisted
truck platooning using cooperative adaptive cruise control (CACC)
and vehicle-to-vehicle (V2V) communication technology. The
authors used computational fluid dynamics analysis and simulation
models, which were validated using empirical data obtained from a
test track. They found that truck platooning resulted in fuel savings
of between 5% and 7% and that the improvements were a function
of the following distance of trucks in the platoons. The ENSEM-
BLE project (Konstantinopoulou et al. 2019) identified V2V com-
munication protocols for multibrand truck platooning in Europe.
Three platoon levels were defined based on automation capabilities
and time gaps between vehicles. The FHWA Level 1 Truck Pla-
tooning Research Program is currently ongoing and has aims to
explore human factors and early deployment factors related to truck
platooning operations in the US (McHale 2019). In addition to this,
an extensive literature review relative to truck platooning control
systems can be found elsewhere (Guanettia et al. 2018; Li
et al. 2017).

Because of its widespread importance for many transportation
planning agencies, many traffic microsimulation models have
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added features that allow for CAVmodeling. For example, VISSIM
20 allows the user to model CAV platoons based on a preset
platoon-forming logic and user-defined platoon properties. A com-
prehensive analysis of the platooning logic may be found elsewhere
(PTV 2019b). Issues related to using a simulation model to study
CAV truck platoons will be discussed in the following sections.

HCM-6 EC-PCE Procedure

The HCM-6 EC-PCE methodology is composed of five main steps,
as shown in Fig. 1. In Step 1, the simulated capacities for both pas-
senger car–only flow and mixed flow are obtained for various com-
binations of grade, grade length, truck percentage, and vehicle fleet
composition. In Step 2, the CAFs for 1,274 scenarios are calcu-
lated. A nonlinear regression model is created in Step 3 that can
predict the CAF value as a function of the parameters analyzed
in Step 1. These calibrated models are used to estimate CAFs in
Step 4. In Step 5, the EC-PCEs for specific combinations of truck
percentage, grade, and grade distance are estimated based on the
CAF estimates. These are the values provided in the HCM-6. A
complete description of the HCM-6 EC-PCE methodology, includ-
ing the key simulation parameters of the VISSIM model, can be
found elsewhere (Zhou et al. 2019; Zhou 2018; Dowling et al.
2014b). A brief description that highlights issues critical for mod-
eling the effects of CAV vehicles is given in what follows.

HCM-6 Model Assumptions

It is important to note that the HCM-6 CAF=EC-PCE values are
dependent on the VISSIM 4.4 simulation model; to the authors’
knowledge no empirical data were used to calibrate and validate the
HCM-6 capacity and EC-PCE values (Dowling et al. 2014a, b;
Yang 2013; Zhou 2018). This approach represents a huge advan-
tage from a modeling perspective; it takes significantly less time to
model the 1,274 HCM-6 scenarios versus collecting empirical data
and developing statistically based models. In addition, it also
allows modelers to study new technologies, such as CAV truck pla-
tooning. However, there are a number of issues related to the so-
called all-simulation approach adopted by the HCM-6 (Hendrickson
and Rilett 2017). For example, the VISSIM developers do not guar-
antee backward compatibility, so there is no guarantee that the cur-
rent version, VISSIM 20, will result in the same EC-PCE values as

shown in the HCM-6. Since the HCM-6 was released in 2016,
no less than five updated versions of VISSIM have been released.
Owing to its CAV and platoon modeling capabilities, VISSIM 20
was used in this research. Consequently, a considerable amount of
effort was spent ensuring the reasonableness of using this version of
VISSIM in this research.

The layout of the HCM-6 test network is depicted in Fig. 2. This
test network is a unidirectional freeway segment with three lanes,
each 3.66 m (12 ft) wide. The total length of 24.1 km (15 mi) is
divided into three sections: (1) an initial level section of 12.9 km
(8 mi) to assure that all vehicles may enter in the link regardless
of congestion level, (2) an intermediate grade section of 9.7 km
(6 mi) for data collection, and (3) a final level section of 1.6 km
(1 mi). The intermediate grade section contains seven data collection
points (each covering the three lanes). The traffic information ob-
tained at these locations is used as input to the HCM-6 methodology.

The HCM-6 methodology has a large number of assumptions
including those related to vehicle speed [e.g., all vehicles travel
at the same uniform free-flow speed of 112.7 km=h (70 mi=h)],
vehicle length, weight and power, and driving behavior. A detailed
description of the assumptions can be found elsewhere (Dowling
et al. 2014a; Zhou 2018). Unless otherwise noted, all assumptions
in the original HCM-6 research were followed in this paper.

Note that four factors (e.g., truck percentage, grade, distance, and
truck composition type) were examined in the original HCM-6
research. The same factors and scenarios were examined in this pa-
per. In the original research, three truck composition percentages
were also explored: (1) 30=70 single-unit truck (SUT)/tractor trailer
(TT), (2) 50=50 SUT/TT, and (3) 70=30 SUT/TT. In this paper, only
the first scenario was studied because it is the most common on US
highways (HCM 2016).

Background Analysis

The most recent version of VISSIM, VISSIM 20, has CAV platoon
modeling capabilities. However, the HCM-6 EC-PCE values were
calculated using VISSIM 4.4 (Yang 2013). Recent studies have
shown that the HCM-6 EC-PCE results can be replicated using
VISSIM 9 (Zhou 2018; Zhou et al. 2019). However, assuming that
the simulation logic underlying VISSIM releases 4.4 and 9 is the
same as VISSIM 20 would be a mistake. It is important to note that
the VISSIM developers acknowledge that simulation results can

Fig. 1. HCM-6 EC-PCE estimation methodology.
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differ among different versions because of changes and updates in
the internal logic of the simulator (PTV 2019a). Consequently, the
first step was to ensure that the HCM-6 EC-PCE values could be
replicated using VISSIM 20. If so, then the results of this CAV
analysis in this paper can be compared directly to the HCM-6
results.

The first step was to compare the capacity values obtained from
VISSIM 20 and 9 for all scenarios included in the HCM-6. In these
experiments, all the simulation parameters were set equal to the
HCM-6 values, and both passenger cars and mixed-flow traffic
were analyzed. The results showed that the capacity, defined in
the HCM-6 as the 95th percentile of the 1-min average flow rate,
of the passenger car–only condition was 6.54% lower, on average,
for the VISSIM 20 results compared to the VISSIM 9 results. A
paired t-test at a 0.05 level of significance showed that this differ-
ence was statistically significant. In contrast to the passenger car–
only condition, the difference between VISSIM 20 and 9 for the
mixed-traffic condition was only 0.60% on average, and this was
not statistically significant at the 0.05 level of significance.

Based on the aforementioned results, it was decided to use
VISSIM 20 for the mixed-flow simulations and VISSIM 9 for the
passenger car–only flow condition because it was assumed that
this would give the best chance for replicating the HCM-6 results.
This assumption will be verified subsequently in this paper. The
steps for replicating the HCM-6 EC-PCE values are described in
what follows.

Step 1: Flow-Density Plots
In Step 1, the flow-density plots of each scenario are created based
on output from the VISSIM model. Following HCM-6 protocols,
each scenario is simulated using a single run and the same seed
number. There are nine volume levels (e.g., 240, 600, 1,200,
1,800, 1,920, 2,040, 2,160, 2,280, 2,400 veh=h= ln) in every run,
and these correspond to volume-to-capacity ratios of 10%–100%
based on an assumed theoretical capacity of 2,400 veh=h= ln. Each
volume level consists of 1 h of vehicle loading to achieve a steady-
state condition, 1 h of steady-state for data collection, and 1 h of
vehicle unloading. As a result, the simulation period comprises a
total of 27 h per scenario (e.g., 3 h per volume level × 9 volume
levels). The scenarios are defined by a combination of the following
factors:
• 2 flow-rate types (f), either passenger car–only or mixed-traffic

flow;
• 13 levels of truck percentage (p) from 2% to 100%;
• 13 levels of grade (g) from −6% to 6%; and
• 7 levels of grade distance (d) from 0.40 km (0.25 mi) to

8.05 km (5.00 mi).
In total, there are 91 scenarios for the passenger car–only flow

condition (e.g., 13 levels of grade × 7 levels of distance) and 1,183

scenarios for the mixed-traffic flow condition (e.g., 13 levels
of truck percentage × 13 levels of grade × 7 levels of distance).
The VISSIM model output consisted of the space mean speed and
the flow rate collected at each detector per 1-min interval. These
outputs are used to compute the hourly flow rate and density,
at 1-min averages, for each combination using Eqs. (1) and (2),
respectively:

qf;t;p;m;g;d;r ¼ Vf;t;p;m;g;d;r × 60 ð1Þ

kf;t;p;m;g;d;r ¼
qf;t;p;m;g;d;r

v̄f;t;p;m;g;d;r
ð2Þ

where qf;t;p;m;g;d;r = flow rate for f flow type at t time interval, p
truck percentage level, m truck composition level, g grade level, d
distance level, and r simulation flow-rate level based on 1-min
interval traffic volume recorded by the detector (veh=h= ln);
Vf;t;p;m;g;d;r ¼ 1-min interval traffic volume recorded by detector
for f flow type at t time interval, p truck percentage level, m truck
composition level, g grade level, d distance level, and r simulation
flow-rate level (veh=min= ln); kf;t;p;m;g;d;r = density for f flow type
at t time interval, p truck percentage level, m truck composition
level, g grade level, d distance level, and r simulation flow-rate
level (veh=mi= ln); v̄f;t;p;m;g;d;r ¼ 1-min interval space mean speed
for f flow type at t time interval, p truck percentage level, m truck
composition level, g grade level, d distance level, and r simulation
flow-rate level (mi=h).

The hourly flow-rate and density values populate the scatter
plots for each scenario. There are 1,274 scatter plots in total. Each
flow-density scatter plot for a given scenario contains 540 pairs of
flow-rate and density values (e.g., 60 min × 9 volume levels).

Each scatter plot is used to identify the capacity value for a given
scenario. Note that in the HCM-6, capacity is defined as the 95th
percentile of the maximum 1-min average flow rate for the given
scenario (Dowling et al. 2014a, b; Yang 2013). To the authors’
knowledge, this is the first time that the HCM has used an aggre-
gation level other than 15 min to calculate a traffic-flow metric.
Therefore, care must be taken in comparing the capacity values
found in the HCM-6, and by definition in this paper, with other
published capacity values that are based on larger aggregation lev-
els. The simulated capacity for each of the 1,274 scenarios is cal-
culated using Eq. (3). Note that if the 540 observations from each
scenario were ordered from smallest to largest, the 95th percentile
value would be the 513th largest observation:

Cf;p;m;g;d ¼ P95
t¼1;60
r¼1;9

fqf;t;p;m;g;d;rg ð3Þ

where Cf;p;m;g;d = capacity for f flow type at p truck percentage
level, m truck composition level, g grade level, and d distance level

Fig. 2. Schematic of HCM-6 VISSIM network for EC-PCE estimation. (Data from Dowling et al. 2014a.)
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(veh=h= ln); P95 = 95th percentile; and qf;t;p;m;g;d;r = flow rate for f
flow type at t time interval, p truck percentage level, m truck com-
position level, g grade level, d distance level, and r simulation flow-
rate level, based on sixty 1-min interval traffic volume recorded by
detector (veh=h= ln).

To illustrate, Fig. 3 shows a graph of flow rate versus density
for the passenger car–only flow, 3% grade, and 1.61 km (1.0 mi)
distance scenario. It may be seen that the relationship between
flow rate and density is linear. Using Eq. (3), the definition of
the HCM-6 EC-PCE methodology, the capacity is found to
be 2,260 veh=h= ln.

Fig. 4 shows the flow-rate versus density graph for the same
conditions as Fig. 3 but for the mixed-traffic flow condition and
a 20% truck percentage. It may be seen that at low density, the re-
lationship between flow-rate and density is linear. A breakpoint oc-
curs at approximately 25 veh/mi/ln, and the capacity value is
estimated to be 1,780 veh=h= ln.

Step 2: Computation of CAFs from Simulation Output
In this step, the CAFs for each scenario are calculated using the
simulation results from Step 1. These are calculated for the
mixed-flow and passenger car–only scenarios using Eqs. (4) and
(5), respectively. These equations use the capacity of each scenario
obtained from the flow-density scatter plots from Step 1:

CAF2;p;m;g;d ¼
C2;p;m;g;d

C1;0;0;g;d
; ∀ p ¼ 1;P;

∀ m ¼ 1;M; ∀ g ¼ 1;G; ∀ d ¼ 1;D ð4Þ

CAF1;0;0;g;d ¼
C1;0;0;g;d

C1;0;0;g;d
¼ 1; ∀ g ¼ 1;G; ∀ d ¼ 1;D ð5Þ

where CAF2;p;m;g;d = capacity adjustment factor for mixed flow at
p truck percentage level (P ¼ 13), with m the truck composition

Fig. 3. Passenger car–only flow-density scatter plot [grade 3%, distance 1.61 km (1 mi)].

(1.61 km (1 mi)) 

Fig. 4. Mixed-traffic flow-density scatter plot [grade 3%, distance 1.61 km (1 mi)].
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level (M ¼ 3), g the grade level (G ¼ 13), and d the distance level
(D ¼ 7); CAF1;0;0;g;d = capacity adjustment factor for auto-only
flow at g grade level (G ¼ 13) and d distance level (D ¼ 7);
C2;p;m;g;d = capacity for mixed flow at p truck percentage level,
with m truck composition level, g grade level, and d distance level
(veh=h= ln); and C1;0;0;g;d = capacity for auto-only flow at g grade
level and d distance level (veh=h= ln).

To illustrate, consider the scenario defined by mixed flow
(f ¼ 2), 20% truck percentage (p ¼ 5), 30=70 SUT/TT truck com-
position (m ¼ 1), þ3% grade (g ¼ 10), and 1.61 km (1.0 mi) dis-
tance (d ¼ 4). Note that the passenger car–only and mixed-traffic
scatter plots for this situation were shown in Figs. 3 and 4, respec-
tively. Using Eq. (4) the CAF for this situation (CAF2;5;1;10;4) is
0.788 (1,780=2,260). This calculation is repeated for the other
1,273 scenarios using either Eq. (4) or Eq. (5), as appropriate for
the given flow type.

The CAFs for all 1,274 scenarios are shown in Fig. 5. The x-axis
represents the scenario number. Each specific scenario number is
calculated using Eq. (6) and is a function of the truck percentage,
grade, and distance. There were 14 truck percentage values (includ-
ing 0%), and these are shown at the top of Fig. 5. The thinnest line
in the background represents the simulated CAFs from this paper
and the lower thick line the estimated CAFs obtained in the original
HCM-6 research. The blue line will be discussed in Step 4. For a
given truck percentage, the CAFs for grade and grade distance are
shown in order. The general form is a flat straight line for the neg-
ative and zero grade scenarios, followed by decreasing CAF values
for the positive grade values:

n ¼ 91 × pþ ðg − 1Þ × 7þ d ð6Þ

where n = scenario number; p = ordinal number of truck percentage
level (p ¼ 1; 2; : : : ;P indicates a 2%–100% truck percentage); P =
total levels of truck percentage, P ¼ 13; g = ordinal number of
grade level (g ¼ 1; 2; : : : ;G means –6% to 6% grade); G = total
levels of grade, G ¼ 13; d = ordinal number of distance level (level
of detector location) (d ¼ 1; 2; : : : ;D means 0.40–8.05 km
(0.25–5.00 mi); and D = total levels of distance (detector location),
D ¼ 7.

All else being equal, a greater CAF value indicates a higher
capacity of the freeway segment. A visual analysis suggests that
there is a good match between the estimated CAF values from
the two sources. This closeness will be examined statistically in
the next section. Note that the CAF values from the HCM-6 are
fairly stable while the simulation values tend to have considerable
variability. This difference will be explained in the following
section.

Step 3: Regression Model Development for Estimated CAFs
Because of the inherent variability of the CAF results from the sim-
ulation, the HCM-6 developers chose not to use the simulated CAF
values directly. Instead, they calibrated a regression model that re-
lated the simulated CAF values to the truck percentage, grade, and
distance parameters. The goal was to lessen the variability in the
CAF results.

The CAF values from Step 2 are used as input, and statistical
regression techniques are used to calibrate the model. The nonlinear
regression model used in the HCM-6 are shown in Eqs. (7)–(11)
(Dowling et al. 2014b; Zhou et al. 2019; Zhou 2018):

CAF2;p;m;g;d ¼ CAF1;0;0;g;d − CAFTa
2;p;m − CAFGa

2;p;m;g;d − CAFFFSa2;p;m

ð7Þ

CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T ð8Þ

ρGa
2;p;m ¼

8<
:

γGa
2;m × ðpsÞp; if ðpsÞp < p�

θGa
2;m − μGa

2;m × ðpsÞp; if ðpsÞp ≥ p� ð9Þ

CAFGa
2;p;m;g;d ¼ ρGa

2;p;m ×maxf0;αGa
2;m × ½eϕGa

2;m×ðgsÞg − ηGa
2;m�g

×maxf0; βDa
2;m × ½1 − αDa

2;m × eϕ
Da
2;m×ðdsÞd �g ð10Þ

CAFFFSa2;p;m ¼ μFFSa
2;m ×

h
1 − ρFFSa2;p;m × ðpsÞ

βFFSa
2;m

p

i

× ½ð70 − FFS1Þ=100�ϕ
FFSa
2;m ð11Þ

Fig. 5. Estimated CAF for each scenario.
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where CAF2;p;m;g;d = capacity adjustment factor for mixed flow at
p truck percentage level, m truck composition level, g grade level,
and d distance level; CAF1;0;0;g;d = capacity adjustment factor for
auto-only flow at g grade level and d distance level (this value is
assumed to be 1); CAFTa

2;p;m = capacity adjustment factor for truck
percentage effect for mixed flow at p truck percentage level and m
truck composition level; CAFGa

2;p;m;g;d = capacity adjustment factor
for grade effect for mixed flow at p truck percentage level and m
truck composition level; CAFFFSa2;p;m = capacity adjustment factor for
free-flow speed effect for mixed flow at p truck percentage level
and m truck composition level; ρGa

2;p;m = coefficient for capacity ad-
justment factor for grade effect for mixed flow at p truck percent-
age level and m truck composition level; ðpsÞp = truck percentage
at p truck percentage level (between 0 and 1); p� = threshold of
truck percentage for calculating coefficient for capacity adjustment
factor related to grade with default value 0.01; ðgsÞg = grade at g
grade level (between −0.06 and 0.06); ðdsÞd = distance of grade at
d distance level (mi); FFS1 = free-flow speed for auto-only flow
(mi=h); αTa

12;m
, βTa

12;m
= parameters for capacity adjustment factor

for truck percentage effect; γGa
2;m, θGa

2;m, μGa
2;m, αGa

2;m, ϕGa
2;m, ηGa

2;m,

βDa
2;m, α

Da
2;m, ϕ

Da
2;m = parameters for capacity adjustment factor for

grade effect; and μFFSa
2;m , ρFFSa2;p;m, β

FFSa
2;m , ϕFFSa

2;m = parameters for capac-
ity adjustment factor for free-flow speed effect.

This paper adopted the same form of the nonlinear model
[i.e., Eq. (7)] as was used in the HCM-6. The parameters were es-
timated using a generalized reduced gradient (GRG) approach. This
is a nonlinear optimization method that uses an iterative process to
optimize a target value. In this paper, the target goal was to min-
imize the sum of squared errors between the simulated CAFs from
Step 2 and the estimated CAFs from the nonlinear regression
model. A detailed description of the method can be found else-
where (Lasdon et al. 1974). Note that the original research did not
mention the optimization technique that was applied to find the best
estimates of the model parameters.

Table 3 shows the values of the parameters in the CAF model for
the original research and for this paper in Rows 1 and 2, respec-
tively. It may be seen that the estimators between both cases are

very similar. It is hypothesized that the small differences found
are due to the different versions of the simulator.

Step 4: CAFs Estimation for Specific Conditions
In this step, the CAFs for the mixed flow scenarios (CAF2;ps;ms;gs;ds )
are estimated for the specific conditions listed in the HCM-6. The
parameters of interest are truck percentage ps, grade gs, and dis-
tance ds. These estimated CAFs are obtained using Eq. (7) based
on the calibrated parameters shown in Table 3 (Row 2).

Fig. 6 shows a scatter plot of the estimated CAF value from the
original HCM research as a function of the estimated CAF value
from this paper. There are a total of 1,274 points or comparisons in
this figure. It may be seen that the approach adopted in this paper
resulted in a linear relationship with a very high R2 value of 0.99.
Fig. 5 shows a direct comparison between the CAF values calcu-
lated in this paper (upper thick line) and the CAF values from the
HCM-6 (lower thick line). Not surprisingly, the CAF values are
generally in agreement. It was concluded that using a VISSIM 9
model for passenger cars and a VISSIM 20 model for mixed traffic
allowed for an accurate estimation of the HCM-6 values.

Fig. 6 also shows the relationship between the HCM-6 CAF val-
ues and the values obtained if all the simulation data were obtained
from VISSIM 20. While the relationship is generally linear, there is
considerably more scatter, as evidenced by the mean absolute per-
centage error (MAPE) value of 8.2%. In addition, the VISSIM 20
CAF results tended to underestimate the CAF values used in the
HCM-6. This is why a combination of VISSIM 9 and 20 was used
in this paper. Because VISSIM 20 limits lane changing for vehicles
traveling at the same speed, it is hypothesized that this adversely
affected the passenger car–only simulations (PTV 2019a). With re-
spect to mixed-traffic conditions, this is not as critical as the vehicle
characteristics create more lane changing opportunities. This also
illustrates a danger in using simulation models for national design
guides without adequate controls, such as clearly defining simula-
tion logic and parameters (Hendrickson and Rilett 2017; Rilett
2020).

Step 5: EC-PCE Estimation
In the last step of the methodology, the EC-PCEs (EC−
PCE2;ps;ms;gs;ds ) at specific conditions of truck percentage ps,
grade gs, and distance ds are calculated using Eq. (12):

Fig. 6. Original CAF from HCM-6 versus estimated CAF derived from more recent VISSIM models.
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EC − PCE2;ps;ms;gs;ds ¼
1 − ð1 − psÞ × CAF2;ps;ms;gs;ds

ps × CAF2;ps;ms;gs;ds

ð12Þ

where EC − PCE2;ps;ms;gs;ds = EC-PCE for mixed flow at truck per-
centage ps, truck composition ms, grade gs, and distance ds;
CAF2;ps;ms;gs;ds = capacity adjustment factor for mixed flow at truck
percentage ps, truck compositionms, grade gs, and distance ds; and
ps = truck percentage (between 0 and 1).

The estimated EC-PCEs as a function of the HCM-6 EC-PCEs
are shown in Fig. 7. It may be seen that the relationship is approx-
imately one to one with an R2 value of 0.997 and a MAPE of 3.9%.
It was concluded that the simulation approach adopted in this paper
can (1) replicate the current HCM-6 values using the HCM-6 as-
sumptions, and (2) be used to model the effect of CAVs on capacity
and PCE values using the same HCM-6 approach. Also shown in
Fig. 7 is the relationship between the HCM-6 EC-PCE values and
the estimated EC-PCE values if only VISSIM 20 were used. While
linear, the fit is not nearly as good, as evidenced by the MAPE
value of 18.3%.

CAV Modeling Methodology

The HCM-6 methodology, using VISSIM 20 with the parameter
sets described previously, was applied to estimate the EC-PCEs
when trucks have CAV capabilities. Because the goal of this study
was to explore the effect of CAV truck platooning on the capacity
of freeway segments, it was assumed that only trucks could operate
in CAV mode and that the truck operational characteristics were the
same as in the HCM-6. In other words, the only difference between
the trucks in the HCM-6 and the trucks in the CAVanalysis is that
the trucks in the latter scenario could form platoons based on
CAV logic.

The VISSIM CAV-related parameter values are based on the Co-
Exist project (Sukennik 2018). The CoExist project is one of the
largest research projects to date related to CAV technology. This
project was funded by the European Union to prepare the transi-
tional period in which CAVs and conventional vehicles will share

roads. The developers of VISSIM, the PTV Group, were respon-
sible for the traffic operation section of the project.

Table 1 shows the parameter set for the CAV vehicles used in
this paper. The default driving behavior was AVaggressive (CoEx-
ist), which is recommended for CAVs that have full automation
(Sukennik 2018). It should be noted that some of the driving behav-
ior parameters were modified to be consistent with the calibrated
safety distance parameters (e.g., CC0þ CC1) used in the original
research. Specifically, the headway time parameter CC1 was set to
0.5 s, instead of the default value of 0.6 s, because this was the
value used in the original research. Similarly, the minimum clear-
ance distance was set to 1.5 m, instead of the default value of
2.0 m, because this was the value used in the CoExist project. Note
that the analysis in this paper was repeated without making these
two minor changes, and the results in this paper were not changed
appreciably.

CAV Base Case

Four major CAV factors were studied. The market penetration rate
parameter is defined as the percentage of trucks in a traffic stream
with CAV capabilities that would allow CAV platoons to form. The
value for the base case was 100%. The lane restriction parameter
refers to the number of lanes, starting from the median lane, in which
CAV trucks were prohibited from traveling. For the base case, it was
assumed that there were no lane restrictions. The platoon truck type
factor is related to which truck types, SUTor TTor both, are allowed
to join a CAV truck platoon. For the base case, platoons could only
form using trucks of the same type. Lastly, the platoon size parameter
is defined as the maximum number of trucks that can be part of a
given CAV truck platoon. For the base case, this value was set to
seven. Sensitivity analyses were used to explore the effect of chang-
ing market penetration rate, lane restriction rules, truck platoon ve-
hicles, and truck platoon size on the EC-PCE values.

Modeling the CAV Base Case

The EC-PCE values for the CAV base case scenario were devel-
oped using the HCM-6 procedure shown in Fig. 1.

Fig. 7. Impact of VISSIM version on replication of HCM-6 EC-PCEs.

© ASCE 04020159-8 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2021, 147(2): 04020159 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

92
.2

49
.3

2.
11

8 
on

 0
2/

01
/2

1.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Steps 1 and 2: Simulated CAFs
The 91 passenger car–only scenarios and their associated flow-
density plots were developed using VISSIM 9, as described previ-
ously. Next, the flow-density plots were developed for the 1,183
CAV scenarios using VISSIM 20. From these plots the HCM-6
capacity, defined as the 95% maximum flow rate using 1-min ag-
gregation, was identified. These capacities were then used in Step 2
to calculate the CAF values of the CAV condition for each of the
1,274 combinations.

For illustrative purposes, Fig. 8 shows the flow-density curve
for the baseline CAV condition for the same conditions as in

Fig. 4. It may be seen that the breakpoint occurs at a higher
density value (e.g., 30 veh=h= ln). In addition, the CAV capacity
(e.g., 2,080 veh=h= ln) is approximately 10% higher than the equiv-
alent non-CAV capacity (e.g., 1,780 veh=h= ln). It is hypothesized
that the higher capacity occurs due to the deployment of CAV truck
platoons in the traffic stream, which vehicles have shorter headways
and reduced stochasticity compared to non-CAVs.

Step 3: Nonlinear Model Development
In the original HCM-6 research, a nonlinear regression model was
used in Step 3. The form for the HCM-6 analytical model was

Table 1. CAV driving behavior parameters in VISSIM 20

Model Parameter Setting

Autonomous driving Enforce absolute braking distance Unselected
Use implicit stochasticity Unselected

Platooning possible Selected
Maximum number of vehicles 7

Maximum desired speed 112.65 km=h (70 mi=h)
Maximum distance for catching up to a platoon 250 m

Gap time 0.5 s
Minimum clearance 1.50 m

Following Look ahead Minimum 0 m, maximum 300 m
Number of interaction objects and vehicles 10 and 8

Look-back distance Minimum 0 m, maximum 150 m
Behavior during recovery from speed breakdown

Slow recovery Unselected
Speed 60%

Acceleration 40%
Safety distance 110%

Distance 200 m
Standstill distance for static obstacles Unselected

Car following Wiedemann 99
CC0 standstill distance 1.0 m

CC1 gap time 0.5 s (constant)
CC2 following variation 0.0 m

CC3 threshold for entering following −6.0
CC4 negative following threshold −0.10
CC5 positive following threshold 0.10

CC6 speed dependency of oscillation 0.0
CC7 oscillation acceleration 0.10 m=s2

CC8 standstill acceleration 4.0 m=s2

CC9 acceleration with 80 km=h 2.0 m=s2

Following behavior depending on vehicle class Same as conventional traffic

Lane change General behavior Free lane selection
Necessary lane change (own and trailing vehicle)

Maximum deceleration −4.0 and −4.0 m=s2

−1 m=s2 per distance 100 and 100 m
Accepted deceleration −1.0 and −1.5 m=s2

Waiting time before diffusion 60 s
Minimum clearance (front/rear) 0.5 m
Safety distance reduction factor 0.75

Maximum deceleration for cooperative braking −6.0 m=s2

Overtake reduced speed areas Unselected
Advanced merging Selected

Vehicle routing decisions look ahead Selected
Cooperative lane change Selected
Maximum speed difference 10.8 km=h
Maximum collision time 10.0 s

Rear correction of lateral position Unselected

Lateral behavior Desired position at free flow Middle of lane
Observed adjacent lane(s) Unselected
Overtake on same lane Unselected

Exceptions for overtaking vehicles None
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based on kinematic and resistance equation–related vehicles as-
cending and descending different grades (Dowling et al. 2014b).
A heuristic optimization approach was used to calibrate the model
where the goal was to identify the model that minimized the error
between the simulated CAFs and the estimated CAFs. The param-
eters of these equations were optimized using an Excel spreadsheet.
The final model consisted of a combined grade and distance effect
parameter, a free-flow speed effect parameter, and truck percentage
effect parameter (Dowling et al. 2014b; Zhou 2018) as shown in
Eqs. (7)–(11).

In this paper, the same model structure was assumed. However,
the truck percentage effect (CAFTa

2;p;m) parameter could not be cali-
brated to an acceptable level. Therefore, it was decided to use four
parameters to model this effect. No changes in model format were
performed for combined grade and distance effect (CAFGa

2;p;m;g;d)

and free-flow speed effect (CAFFFSa2;p;m). The statistic that was used
to assess model fitting was the standard error of the regression (S),
as shown in Eq. (13). The advantage of the Smetric is that it can be
applied for both nonlinear and linear models, in contrast to the R2,
which is only valid for linear models (Spiegelman et al. 2011):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE
N − P

r
ð13Þ

where S = standard error of regression; SSE = sum of squared er-
rors; N = number of observations; and P = number of parameters
in model.

Seven potential models that attempted to capture the truck per-
centage effect were analyzed as shown in Table 2. The HCM-6
model, shown as Model 1, is a power function with two parameters.
It had an S value of 0.0578. Model 4, which is a polynomial model,
had an S value that was approximately a sixth of the size of Model
1. This model was chosen because it had a low S value and fewer
parameters compared with other models. Once the final model
structure was chosen, the same approach as in the HCM-6 meth-
odology was adopted to find the best estimators for the parameters
of the nonlinear regression model.

Figs. 9(a and b) show the simulated CAF value versus the esti-
mated CAF values for the original HCM-6 model formulation and
the revised model formulation, respectively. It may be seen that the
revised model formulation performed much better at predicting the

(1.61 km (1 mi))

Fig. 8. Flow-density scatter plot for 20% CAV scenario [grade 3%, distance 1.61 km (1 mi)].

Table 2. Goodness-of-fit results for CAV analysis

No. Model for truck percentage effect P S ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p

1a CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T 15 0.0578

2 CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

16 0.0215

3 CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

× PT 16 0.0257

4b CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

× P
βTa
22;m

T 17 0.0105

5 CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

× P
βTa
22;m

T þ αTa
32;m

18 0.0103

6 CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

× P
βTa
22;m

T þ αTa
32;m

× PT 18 0.0127

7 CAFTa
2;p;m ¼ αTa

12;m
× P

βTa
12;m

T þ αTa
22;m

× P
βTa
22;m

T þ αTa
32;m

× P
βTa
32;m

T 19 0.0096

Note: P = total number of parameters in full nonlinear model; S = standard error of regression in CAF units; PT = truck percentage value; and αTa
i2
, and βTa

i2;m
=

model parameters relative to truck percentage effect.
aOriginal model.
bProposed model.
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CAF value for a given scenario, as evidenced by the linear relation-
ship shown in Fig. 9(b) and the very high R2 statistic of 0.971.

Table 3 shows themodel parameters thatwere used to calculate the
estimated CAFs using Eqs. (7)–(11) for each scenario. Row 1 corre-
sponds to the HCM-6 research, Row 2 to the HCM-6 replication de-
scribed earlier, and Row 3 to the CAV base case described earlier.

Step 4: Estimated CAF Results for CAV Base Case
Once the regression models were calibrated in Step 3, the CAFs
were then estimated. A comparison of the estimated CAFs for the
CAV condition (base case) and the estimated CAFs for the non-
CAV condition (e.g., HCM-6 results) are shown in Fig. 10. The
increasing line represents the CAV condition and the decreasing
line the non-CAV condition. The scenario number (horizontal axis)
is given by Eq. (6) and corresponds to a particular combination of
truck percentage, grade, and distance that was used to compute
the corresponding CAF. For the non-CAV condition, the CAF val-
ues decrease as truck percentage increases, and this decrease is at a
fairly linear rate. In contrast, for the CAV condition the CAF values
increase as the percentage of trucks increase. For truck percentages
of less than 10%, the CAF values are similar to the HCM-6. It is

hypothesized that this occurs because there are fewer opportunities
for truck platoon formation. Interestingly, when trucks are 100% of
the vehicle stream, the CAF values are approximately 10.5% higher
than the CAF for passenger cars. That is, a traffic stream with 100%
CAV will have a higher vehicle flow rate than a traffic stream with
100% passenger cars. Taking as reference the truck percentage in-
terval from 10% to 100% (Scenarios 274–1,274), the CAF values
for the CAV condition are, on average, 41.0% higher (ranging from
0.1% to 176.5%) than those of the non-CAV condition.

Step 5: EC-PCE Results for CAV Base Case
Similar to the HCM-6, the EC-PCE values were estimated for 10
levels of truck percentage (i.e., 10%–100% in 10% increments),
grade (i.e., 0%, þ3%, and þ6%), and distance [i.e., 0.8 km
(0.5 mi), 1.61 km (1.0 mi), and 2.42 km (1.5 mi)]. Fig. 11 shows
the corresponding EC-PCE values as a function of truck percentage
for the three levels of grade and three levels of distance for both the
CAV condition (base case) and the HCM-6 values. The solid line
represents the CAV EC-PCE values and the dotted line the HCM-6
(e.g., non-CAV) EC-PCE values. The EC-PCE values were calcu-
lated using Eq. (12). Note that any specific condition within the

Fig. 9. Goodness of fit between simulated and estimated CAFs for original and proposed models: (a) truck percentage effect (original model); and
(b) truck percentage effect (proposed model).

Table 3. Parameters and their estimates for various CAF models

Condition (30=70 SUT/TT)

Nonlinear model parameter

αTa
12;m

βTa
12;m

αTa
22;m

βTa
22;m

γGa
2;m θGa

2;m μGa
2;m αGa

2;m ϕGa
2;m ηGa

2;m αDa
2;m βDa

2;m ϕDa
2;m

HCM-6 original 0.53 0.72 — — 8.0 0.126 0.030 0.69 12.9 1.0 1.71 1.72 −3.16
Non-CAV replication 0.52 0.75 — — 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
CAV base case 0.15 0.24 −0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Penetration rate 100%a 0.15 0.24 −0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Penetration rate 75% 2.41 0.30 −2.26 0.30 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Penetration rate 50% 0.33 0.62 −0.04 10.80 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Penetration rate 25% 0.49 0.81 −0.09 10.64 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Two-lane restriction 0.02 −0.35 0.65 1.41 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
One-lane restriction 0.27 5.94 0.06 −0.12 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Nonlane restrictiona 0.15 0.24 −0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon per truck typea 0.15 0.24 −0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon any truck type 0.22 0.36 −0.34 1.88 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon size 9 0.39 0.69 −15.1 26.19 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon size 7 0.33 0.62 −0.04 10.80 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon size 5 0.38 0.69 −0.05 6.99 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Platoon size 3 0.39 0.70 −0.11 5.89 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 −3.16
Note: Capacity adjustment factor for free-flow speed effect for mixed flow is given by following parameters: μFFSa

2;m ¼ 0.25; ρFSS2;m ¼ 0.70; βFSS
2;m ¼ 1.0; and

ϕFSS
2;m ¼ 1.0. This factor is equal to zero when the assumed free-flow speed is 112.65 km=h (70 mi=h), as the case in the original research.

aBase case scenario.
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explored range of truck percentage, grade, and distance that were
considered in the HCM-6 methodology can be computed using the
model parameters provided in Table 3. On average, the EC-PCE
values for the CAV condition are 34.3% lower than those of the
non-CAV condition, indicating that the CAV technology lessens
the impact of heavy trucks on traffic operations.

For both the CAV and non-CAV conditions, the maximum EC-
PCE values occur at a truck percentage of 10%. These values range
from 2.0 to 4.5. In general, as the grade and distance increase, so
does the EC-PCE. For higher truck percentages, the EC-PCE values
for the non-CAV condition tend to decrease as truck percentages
increases until the 30% value is reached. After this point, the

EC-PCE values tend to increase at a decreasing rate with truck per-
centage. In general, the EC-PCE ranges from 2.0 to 4.5 for the non-
CAV condition. In contrast, for the CAV condition the EC-PCE
decrease at a decreasing rate as percentage of trucks increase.
As would be expected from the earlier analysis, as the truck per-
centage approaches 100% the EC-PCE value approaches 1.

In summary, the CAV technology increases the capacity for a
given scenario, all else being equal, and this results in correspond-
ingly lower EC-PCE values. The increase in capacity for a given
scenario is a function of the grade, grade length, and percentage
trucks in the scenario. It should be noted that this comparison is
for trucks equipped with CAV technology. It is hypothesized that

Fig. 10. CAF values as function of scenario number: CAV and non-CAV scenarios.

Fig. 11. EC-PCE values as function of truck percentage: CAV and non-CAV scenarios.
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if passenger cars also had CAV platoon technology, then the capac-
ity increase shown in Fig. 11 would be even greater. However, it is
unclear how the EC-PCE values would change without a detailed
simulation study, which is beyond the scope of this paper.

Sensitivity Analysis of CAV Operational Factors

The parameters that were studied in the sensitivity analysis were
market penetration rate, lane restriction, platoon truck type, and
platoon size as shown in Table 4. Note that the values with an as-
terisk were considered in the base case scenario described earlier.

The market penetration rate parameter is defined as the percent-
age of trucks in traffic demand with CAV capabilities. Four other
values, in addition to the base case value of 100%, were analyzed.
Three lane restriction parameter values were analyzed, including
the base case value of No lane restriction. The one-lane restriction
case meant that the leftmost lane could not be used by trucks, while
two-lane restriction meant that the two leftmost lanes could not
be used by trucks. The platoon truck type parameter included both
any truck type, meaning that platoons had no restriction on truck
type, and per truck type, indicating that platoons could only consist
of similar truck types (e.g., base case). Lastly, four platoon-size
parameter values were utilized, and these consisted of 3, 5, 7
(e.g., base case), and 9 for the maximum number of trucks that
can be part of a CAV truck platoon.

The EC-PCE values as a function of scenario number for each of
the four sensitivity analyses are shown in Fig. 12. The scenario
number is calculated using Eq. (6) and represents the combination
of truck percentage, grade, and distance that was used to compute
the corresponding EC-PCE. The EC-PCE values were calculated
using the model parameters provided in Table 3, which were ob-
tained following the same HCM-6 methodology used for the CAV
base case.

Market Penetration Rate

As may be seen in Fig. 12(a), the EC-PCE values tend to decrease
as market penetration rate increases, and this holds true for all truck
percentage rates. For truck percentages in a range of 10%–20%, the
EC-PCE values for the CAV scenarios are, on average, 15.8%
lower compared to the non-CAV condition (0% market penetration
rate). For truck percentages in a range of 30%–100%, the EC-PCE
values decrease as market penetration rate increases. The decrease
for the 25%, 50%, 75%, and 100% market penetration rate is, on
average, 12.9%, 25.2%, 37.6%, and 41.3% lower than the corre-
sponding non-CAV scenario, respectively. Interestingly, the market
penetration rates of 75% and 100% produce similar EC-PCE values
up to the 70% truck percentage level. After this point the 100%
market penetration rate scenario performs better with EC-PCE val-
ues being, on average, 12.4% lower. In summary, higher market
penetration rates tend to produce lower EC-PCE values, indicating
that as market penetration rates increase, the impact of trucks on
freeway capacity decreases, all else being equal.

Platoon Truck Type: Restricted versus Unrestricted

Fig. 12(b) shows the EC-PCE values as a function of scenario for
the truck type parameter. It can be seen that there are only slight
differences between the results for the restricted and unrestricted
platoon types. For lower truck percentages (e.g., 0%–30%) and
the highest truck percentage (e.g., 100%), the EC-PCE values
are approximately the same for both scenarios. For truck percent-
ages in the range of 40%–90%, the EC-PCE values for the re-
stricted platoon scenario were, on average, 10.6% greater than
the unrestricted platoon scenario. This indicates that limiting pla-
toons to a specific type of truck type could negatively affect free-
way capacity compared to the unrestricted implementation. It must
be noted that this factor can be affected by the truck composition
type, and for this analysis, only one truck composition type was
explored (30=70 SUT/TT). It is expected that the differences found
would be greater if a different proportion of truck types (e.g., 50=50
SUT/TT) were considered in the analysis.

Platoon Size

Fig. 12(c) shows the relationship between EC-PCE and platoon
size. It can be seen that the maximum platoon size has only a mar-
ginal effect on the EC-PCE values. For example, the largest differ-
ence between the three-truck platoon value and the nine-truck
platoon value is on the order of 4%. It is hypothesized that this
result occurred because the interplatoon spacing and the intrapla-
toon spacing tend to be equivalent near or at capacity conditions.
Note that if merging and diverging zones, which are not part of this
HCM-6 methodology studied in this paper, were considered, it
would be easy to envision platoon size affecting the EC-PCE val-
ues. However, the analysis of this aspect was beyond the scope of
this paper.

Lane Restriction

Fig. 12(d) shows the EC-PCE values as a function of scenario num-
ber for the three lane-restriction scenarios. It may be seen that lane
restriction had the greatest effect, in comparison to the other three
sensitivity analysis parameters, on EC-PCE values. For truck per-
centages less than 20%, the three scenarios (e.g., no lane restriction,
one-lane restriction, and two-lane restriction), had approximately
similar EC-PCE values. However, as truck percentage increased
past the 20% level, so too did the EC-PCE values. The two-lane
restriction scenario had EC-PCE values that were, on average,
91.8% higher than the base case (e.g., no lane restriction). Con-
versely, for truck percentages in the range of 20%–80%, the one-
lane restriction scenario had EC-PCE values that were, on average
11.5%, lower than the no lane restriction scenario. It was hypoth-
esized that this occurred because there was still sufficient room in
the traffic stream for platoons to form and operate. For truck per-
centages in a range of 80%–100%, the one-lane restriction had on
average 33.4% greater EC-PCE values compared to the no lane re-
striction scenario.

In summary, the effect of lane restriction on capacity is depen-
dent on the truck percentage. The effect of lane restriction is

Table 4. List of parameters studied in sensitivity analyses

Factor Scenarios

Market penetration rate parameter 0%, 25%, 50%, 75%, 100%a

Lane restriction parameter No lane restrictiona, one-lane restriction, two-lane restriction
Platoon truck type parameter Restricted (only similar truck types)a, unrestricted (any truck type)
Platoon size parameter 3, 5, 7a, 9
aBase case.
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Fig. 12. CAV EC-PCEs for key operational factors.
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negligible for low truck percentages (20% or below), but it can neg-
atively affect capacity for moderate to high truck percentages (30%
or above), particularly if two of the three lanes are restricted.

Conclusions

The objective of this paper was to analyze the effect of CAV trucks
on freeway segments using the HCM-6 methodology. In particular,
the changes in CAF and EC-PCE values for different operating
characteristics were compared. CAV truck platoons are expected
to be one of the first technologies deployed on the national highway
system. First, the HCM-6 EC-PCEs were replicated using a micro-
simulation model in VISSIM 20. This VISSIM version was chosen
because it can model explicitly CAV trucks and their associated
platoons. Note that the original CAF regression model was recali-
brated to obtain a better fit between the simulated and estimated
results. The impact of CAV technology on freeway capacity was
then quantified using the estimated CAF values and the resulting
EC-PCE values. Additionally, a sensitivity analysis of four CAV
operational factors (e.g., market penetration rate, platoon truck
type, platoon size, and lane restriction) was conducted to measure
how these parameters affected the results.

Not surprisingly, it was found that CAV truck platoons had the
potential to increase capacity on freeway segments, all else being
equal. The EC-PCE values for the CAV base case condition, which
assumed a 100% CAV market penetration rate for trucks, were ap-
proximately 34.3% lower, on average, than those for the non-CAV
condition. In other words, CAV trucks have a lower impact on free-
way operations than non-CAV trucks. To date, there has been no
other analysis of the effect of CAV operations that were based on
the HCM-6 methodology, which is the standard analysis and oper-
ations guide for US transportation agencies.

Another major finding is that operational factors, which were
examined in the sensitivity analysis, tended to have their greatest
effect when the truck percentage is greater than 30%. For truck per-
centage values below this cut-off, the sensitivity analysis scenarios
tended to show similar behavior in operating characteristics. It was
hypothesized that this occurred because the proportion of CAV
trucks was such that the resulting truck platoons, and the associated
truck platoon size, were not enough to influence the capacity of the
freeway segment. This finding indicates that CAV trucks may have
the greatest impact in areas that have higher percentage truck val-
ues, such as in the US Midwest.

Note that in the US Midwest, particularly in rural areas, speed
limits are higher, the maximum free-flow speeds of trucks and cars
are different, and most of the roads are only two lanes in each di-
rection. It is hypothesized that in these areas the positive effect CAV
trucks have on capacity will be greater than shown in this paper.
According to this paper, conducting analyses for localized condi-
tions is relatively straightforward because the HCM-6 approach
is simulation-based. If the conditions described in this paper
(e.g., three lanes in each direction, trucks and cars have the same
free flow speed) are violated, then it is recommended that the pro-
cedure be repeated for local conditions.

It is recommended that the effect of other variables related to
driving behavior and operational characteristics, for example, inter-
platoon spacing, platoon forming logic, weight and power distribu-
tions, and acceleration profiles, be studied. These parameters were
not studied in this paper owing to space limitations and a lack of
empirical data on these topics. This is a potential area of research
that would further aid transportation agencies as they begin their
transition to CAV operations.

Similarly, the authors believe that using simulations that the cur-
rent HCM-6 EC-PCE method for freeway segments and multilane
highways is based on raises a number of issues that should be ad-
dressed in further studies. Because the authors needed to use differ-
ent versions of the VISSIM microsimulation model than was used
in the HCM-6, a recalibration of the nonlinear regression model
was required to replicate the results of the original research. It was
hypothesized that this was a result of periodic updates and changes
in the internal logic of the microsimulation model made by the
developer. In addition, the authors would also recommend calibrat-
ing the HCM-6 methodology to empirical data. This would also
include a deeper assessment of the form and error of the regression
models that fit the simulated and estimated data. It is possible that
different model structures might provide better results. Finally, it is
also recommended that an assessment of the existing simulation
assumptions of the current HCM-6 EC-PCE methodology be per-
formed. Interestingly, in the original research, only one simulation
run was performed for each scenario combination. This point is
crucial because performing a single simulation run drastically in-
creases the noise of the simulation results and could negatively
impact the accuracy of the capacity estimates and the associated
EC-PCE values.
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